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Boltzmann Equation and Relaxation Time
Transport phenomena, such as the flow of electric current in solids, involve 

two characteristic mechanisms with opposite effects: the driving force of the 

external fields and the dissipative effect of the scattering of the carriers by 

phonons and defects. The interplay between the two mechanisms is de- 

scribed by the Boltzmann equation. In thermal equilibrium, 

This equilibrium distribution f0 is 
independent of r because of the 
assumed homogeneity. 

Away from equilibrium, where we merely assume local equilibrium over 

regions large compared with atomic dimensions, the required distribution 

f(r,k,t) can be both space and time dependent. Under an applied external 

field ℰ , an electron that is at r and k at time t, will have had the coordinates 

                                                            at time t-dt. In the absence of collisions, 

each electron with coordinates r - vdt and k + eℰ dt/ℏ  at t-dt must arrive at 

r, k at time t,       



If we express the change in f due to scattering by the term                           

then the correct equation is 

Expanding this up to terms linear in dt gives the Boltzmann equation, 
 

Probability for transitions from the Bloch state 𝜓k to 𝜓k ‘ is 

We employ the relaxation time ansatz, assuming that the rate at which f 

returns to the equilibrium distribution f0 due to scattering is proportional 

to the deviation of f from f0, then



If f does not depend on position (i.e., 𝝯r f=0), then under the influence of 

an electric field ℰ, it follows that the stationary state (∂f/∂t=0) is given by 

To the first order in ℰ,  



The stationary state of the distribution is 

represented as a displaced Fermi sphere 

in a (full line). If the external field is 

switched off, the displaced sphere relaxes 

back to the equilibrium distribution 

(dashed line). 

Only inelastic scattering (a) can cause this 

return to equilibrium. Elastic collisions 

alone, e.g. from defects, cannot facilitate 

the return to equilibrium. Without 

inelastic collisions the Fermi sphere would 

merely expand (b). 



Electrical Conductivity of Metals

Drude Model: an ideal electron gas in the solid,

The scattering is accounted for by the friction term mvD/𝜏 where vD = v − 

vtherm is the so-called drift velocity, i.e., the additional velocity due to the 

field, over and above the thermal velocity. For the stationary case (   = 0) 

one has                             ,  and hence the current density  

The electrical conductivity σ and mobility μ are therefore 

and

Note that, in this simple model, all free electrons contribute to the 
current. This view is in contradiction to the Pauli principle. 



Semiclassical Approach: dynamics of band electrons are considered.

The contribution to the current of electrons in the volume element dk is 

f(k) is the occupation probability function.

For an electric field       in the x-direction, the electrical current density is 

Since the integral is over the whole Brillouin zone and f0(k) has 

inversion symmetry about k = 0, the integral over vx f0 vanishes. 

Furthermore, since 

and

The specific electrical conductivity is therefore 



The energy region over which the Fermi function f0(E) changes rapidly has a 

width of about 4 kT. It also has inversion symmetry about the point (EF , f0 (EF) 

= 1/2). Thus, to a good approximation, 

With

The electrical conductivity σ of a metal can thus be expressed as a surface 

integral over the Fermi surface E(k)=EF in k-space. Only the velocity v(EF) and 

the relaxation time 𝜏(EF) of the electrons at the Fermi surface appear in the 

microscopic description. The above equation expresses precisely the fact that 

only electrons in the vicinity of the Fermi energy are relevant for current 

transport in a metal, as expected from the Pauli exclusion principle. 

For electrons in an exactly parabolic band (quasi-free electrons) we have 

and



If                       we have

Thus, the electrical conductivity σ and mobility μ are given by 

and

To understand the temperature dependence of the resistance of metals, it 

suffices to consider the temperature dependence of 𝜏(EF) or μ, because the 

electron concentration n is independent of temperature. Assuming that the 

phonon and defect scatterings are independent of one another, the total 

scattering probability is the sum of the individual scattering probabilities. 

The scattering probability is inversely proportional to the relaxation time. It 

therefore follows that 

𝜏def is usually temperature independent and 𝜏ph is proportional to the mean 
square vibrational amplitude <u2(q)>, so



We can write the resistivity ρ = 1/σ ∝ 1/𝜏 of a metal as the sum of a 
temperature-independent residual resistivity ρdef (due to defects) and a 
part due to phonon scattering ρph(T) which is linear in temperature at high 
temperature: 

Left figure shows the experimentally 

measured electrical resistance of Na at 

low temperature. Below about 8 K, a 

temperature-independent ρdef residual 

resistance is observed, which depends on 

the defect concentration of the sample. 

At higher temperatures, the component 

described by the Gruneisen formula 

becomes evident, and above 18 K ρph 

displays the linear de pendence ρph ~ T. 



Motion of Electrons in Bands

Motion of equation for an electron in a crystal is  

is useful because it allows us to retain the 

notion of a free-electron even when we have 

a periodic potential, as long as we use m* to 

account for the effect of the lattice on the 

acceleration of the electron.
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Scattering of Electrons in Bands

An exactly periodic lattice of positive cores does not cause scattering. 

Perturbations of the stationary Bloch states can only occur in two ways:

(I) Within the one-electron approximation, where interactions between 

electrons are neglected, the only sources of electron scattering are 

deviations from strict periodicity in the lattice. These may be:

      a) defects in the lattice that are fixed in time and space such as 

vacancies, dislocations, impurities, etc.

      b) deviations from periodicity that vary in time, i.e., lattice vibrations. 

(II) The one-electron approximation neglects interactions between 

electrons. Electron-electron collisions, which are not contained in the 

concept of a non-interacting Fermi gas, can in fact perturb the 

stationary Bloch states. As we will see, this effect is usually much less 

significant than those noted in (I). 



The decisive quantity for the description of an electron scattering 

process is the probability wk'k that the electron will be scattered from a 

Bloch state 𝜓k(r) to a state 𝜓k'(r) under the influence of one of the 

previously described imperfections. 

where is the perturbation to the Hamiltonian. 

If    is a potential that is constant in time, such as that of a static 

defect, then we expect only elastic scattering of the Bloch waves with 

conservation of energy. 

If          is a potential that varies in time, as appropriate for the 

perturbation due to a lattice wave (phonon), then the scattering is 

inelastic.

Energy conservation also applies to the scattering of conduction 

electrons by phonons: 
E(k’) − E(k)  = ±ℏω(q) .



For scattering by a phonon with wave vector q, the perturbation 

potential     naturally has a spatial dependence exp (iq･ r). This 

means 

,    𝜓k(r) = uk (r) eik･r

Because (u*k’uk) has the periodicity of the lattice and can be 

expanded as a Fourier series in terms of reciprocal lattice vectors, the 

matrix element above is non-zero only when 

If we take energy conservation and k-conservation together, then, we 

see that scattering of Bloch-state electrons, formally should be 

represented with a wavepacket, can be well described in the particle 

picture. 



Electron-Electron Scattering

For a collision between two electrons (1)+(2) → (3)+(4), we must have 

   E1 + E2 = E3 + E4 , where Ei = E(ki) denotes the one-particle energy of an 

electron in a non-interacting Fermi gas. Furthermore for the corresponding 

k-vectors:    k1 + k2 = k3 + k4 + G.

Let us assume that one electron occupies the state E1 > EF, an excited state 

just above the Fermi level; the second electron involved in the collision is 

inside the Fermi sphere with E2 < EF. For scattering to states E3 and E4, the 

Pauli principle demands that E3 and E4 must be unoccupied. Thus, 

and

From energy conservation, it then follows that

If                          , then                               

The thermal broadening of the Fermi function is of the order kBT, so that 
the final state E1 must lie within this energy of EF , i.e. ε1 ~ kBT. 



Since only the fraction ~ε1/EF of all electrons 

may scatter with the electron in the state E1. 

If E1 and E2 are in the shell ±ε1 around EF , 

then because of k conservation, E3 and E4 

must also lie in the shell ±ε1 around EF. The k 

conservation in the form k1 − k3 = k4 − k2 

means that the connecting lines (1)−(3) and 

(2)−(4) in the figure must be equal. Because 

only a fraction ~ε1/EF of all unoccupied states 

are allowed final states, the Pauli principle 

further reduces the scattering probability by 

a factor ε1/EF . 

The probability of electron-electron scattering at a temperature of 1 K is 

about a factor ~10-10 smaller than that of electron-defect scattering. 

Let us assume that the cross-section for the scattering of an electron from a 

defect in the lattice is of the order Σ0, then the cross-section for the e-e 

scattering Σ is kB ,  and typically, kB/EF ~10-5 K-1.



• Small number of states can affect the overall current

• Wavefunction coherence lengths are comparable to

characteristic device dimensions

• Single electrons charging effects can be significant

These can amount to overall macroscopic electronic

properties that show deviations from bulk electronic

properties.

Quantum Transport in Nanostructures



Moore’s Law

The number of transistors per microchip doubles roughly 
every two years.



Fermi wavelength (λF): de Broglie wavelength of Fermi electrons

     in d =  3: λF =  23/2(π/3n)1/3

     in d =  2:      λF =  (2π/n)1/2

     in d =  1: λF =  4/n

Important Length Scales

Elastic mean free path (le): average distance the electrons travel without 

being elastically scattered 

     le =  vFτe.    vF denotes the Fermi velocity of the electrons

Phase coherent length (lΦ): average distance the electrons travel before 

their phase is randomized 

     lΦ =  vFτΦ.   τΦ denotes the dephasing time of the electrons

Various characteristic length scales of a propagating electron: 

For metals, λF is below 1nm and for quasi-

metallic 2D electron gases (2DEG), λF lies 

typically between 50 and 100nm.

Inelastic mean free path (lin): average distance the electrons travel before 

their energy is changed, mainly due to interaction with phonons 

     lin =  vFτin.   τin denotes the mean time between inelastic scattering events



Important Mesoscopic Regimes



Electronic Structure of 1-D Systems

1-D 
subbands

Lx

Ly

Consider a quasi one-dimensional wire with a diameter of the order of the 

Fermi-wavelength λF and a length Lz << le, lΦ. Electron transport through the 

wire is called ballistic in that case since an electron passes from one end to 

the other without being scattered at all. 

For free electrons the energy in the subbands is 

( ) ( ),, , , i k z

i jx y z x y e = i, j = quantum numbers in 
the cross section

Thus, the energy bands represent a sequence of parabolas, each of which 
describes one transport channel shown in the above figure. 



Electrical Transport in 1-D

Only the electron states between μL and μR 
contribute to the current flow from left to 
right. The current in one subband i is then 

The difference between the chemical potentials 
is given by the voltage U between the contacts, 

with
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the group velocity of electrons in the subband i (Fig. 9.13a) and D
…1†
i the

one-dimensional density of states in the subband i. According to Sect. 6.1 or

(7.41) the latter is given by

D…1†…E†ˆ
1

p @E=@kz

: …9:98†

With (9.95) follows after insertion of (9.97) and (9.98) in (9.96)

I i ˆ
2e2

h
U: …9:99†

Each subband therefore carries the same current in the case of ballistic

transport. The universal conductance is

G0 ˆ
2e2

h
ˆ 7:74809 10 5 O 1 ˆ 1=…129064 O†: …9:100†

The conductance quantum reduces to half the value e2/h if the spin-degener-

acy is lifted e.g. by a strong magnetic field (quantum-Hall-e€ect, Panel

XVI). I f more than one channel fits into the conductor then each channel

contributes with (9.100) to the total conductance.

The quantization of ballistic conduction can be observed experimentally

if the dimensions of the conductor are of the order of the Fermi-wavelength
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Fig. 9.13. One-dimensional ballistic transport: (a) Energy bands E as function of wave

vector kz along the direction of the one-dimensional conductor. The different parabolas

(subbands) result from the quantization due to the finite dimensions of the conductor in

the x,y-directions. (b) Schematic sketch of the 1D-conductor with contacts on both ends.

(c) Band structure representation: in the left and right contacts, the electrons are assumed

to be in thermal equilibrium described by the chemical potentials (Fermi-levels) L and

R, respectively. Only the electronic states between L and R are relevant for the ballistic

transport along the channel. The difference between L and R is given by the voltage be-

tween the contacts
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The universal conductance is 

If more than one channel fits into the conductor then each channel 
contributes 2e2/h to the total conductance. The conductance quantum 
reduces to half the value e2/h if the spin-degeneracy is lifted by a strong 
magnetic field. 



Conductance of Quantum Point Contact (QPC)



Electron Flow Close to a QPC

Fk2
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・Electrons are wave 

     with wavevector kF

・Interference stripe

     with



QPC Formed in STM



Molecular Break Junctions



Quantum Interference

tnm,α , tnm,β : amplitude for transmission 
along paths α, β





In general: 𝛿g small, random sign

m

n



A2 = (A1 + A2)2 = A1
2 + A2

2 + 2 A1A2 = 4 A1
2

Interference effects double the classical contribution and (slightly) suppress 
the conductance. This is called weak localization.

Weak Localization

The trajectory 3a describes a closed loop that can be circulated about 
clockwise and counter clockwise. Constructive interference may occur which 
leads again to an enlarged backscattering that entails an enhancement of the 
resistance, i.e.,

Weak localization is a physical effect which occurs in disordered electronic 
systems at very low temperatures. Diffusive transport from P to Q in which 
elastic scattering processes occur. 



Weak Anti-Localization

In a system with the carrier’s spin coupled to its momentum, the spin of the 
carrier rotates as it goes around a self-intersecting path, and the direction of 
this rotation is opposite for the two directions about the loop. Because of 
this, the two paths of any loop interfere destructively, which leads to a lower 
net resistivity. This is called weak antilocalization.



eNWt

Br
R

2

2
=

An electron that enters the ring structure from the left has the option of 
two paths denoted as (1) and (2) in the figure. Interferences occur if the 
transport is phase conserving and if the phases of the two paths are shifted 
with respect to each other. The interference is measured as periodic 
oscillations of the current as function of the phase difference between the 
paths. The effect is named Aharonov-Bohm effect.

(1)

(2)

Aharonov-Bohm (A-B) Effect



The transport must be phase conserving. Hence the distance between the 

two contacts L must be smaller than the inelastic mean free path lin and the 

phase coherence length lΦ (diffusive transport) 

For interferences to take place the electrons must possess a defined wa-

velength, i.e. they must propagate in a single subband of a 1D-conductor.

This requires lateral dimensions of the conductor of the order of the Fermi-

wavelength l F. Furthermore the transport must be phase conserving. Hence

the distance between the two contacts L must be smaller than the inelastic

mean free path lin and the phase coherence length lF (di€usive transport)

le < L < lin; lF : …9:101†

The condition for di€usive transport requires su• ciently small dimensions

of the ring structure and low enough temperatures to suppress phonon scat-

tering and obtain a su• ciently large inelastic mean free path lin.

The phase di€erence between the two electron paths (1) and (2) is shifted

by a magnetic flux that traverses the ring. To see that, we consider the case of

ballistic transport (L < le) where electrons propagate as plane waves of the

form exp(ik r) = exp(ip r)/h. In a magnetic field the momentum p in the

Hamilton-operator is to be replaced by the kinetic momentum p±eA with A

the vector potential of the magnetic field. Hence the wave function of the elec-

tron in a magnetic field is that of a plane wave with modified momentum p:

C…r†/ exp i
e

h
A r exp i…k r x t†… † …9:102†

The magnetic field causes a phase shift via its vector potential A. I f the elec-

tron travels the infinitesimal distance ds the phase shift is

d' ˆ
e

h
A ds: …9:103†

For finite distances, the total phase shift is the integral of d' along the

path. For the arrangement shown in Fig. 9.15, in which the magnetic fields

traverses the ring, the wave function at a position r on the downstream

side of the ring is a superposition of partial waves travelling along path (1)

and (2):
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Fig. 9.15. Aharonov-Bohm-effect: The ring enables two possible paths (1) and (2) for elec-

tron transport between the left and right contact. Interference occurs if the transport is

either ballistic or phase conserving because of merely elastic scattering (scattering centers

indicated as dots)

The phase difference between the two electron paths (1) and (2) of the ring 

is shifted by a magnetic flux. We consider the case of ballistic transport (L < 

le) where electrons propagate as plane waves of the form exp(ikr) = 

exp(ipr/ℏ). In a magnetic field the momentum p in the Hamilton-operator is 

to be replaced by the kinetic momentum p−eA with A the vector potential 

of the magnetic field. Hence the wave function of the electron in a magnetic 

field is that of a plane wave with modified momentum p: 

For interferences to take place the electrons must possess a defined wa-

velength, i.e. they must propagate in a single subband of a 1D-conductor.

This requires lateral dimensions of the conductor of the order of the Fermi-

wavelength l F. Furthermore the transport must be phase conserving. Hence

the distance between the two contacts L must be smaller than the inelastic

mean free path l in and the phase coherence length lF (di€usive transport)
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The condition for di€usive transport requires su• ciently small dimensions
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For finite distances, the total phase shift is the integral of d' along the

path. For the arrangement shown in Fig. 9.15, in which the magnetic fields

traverses the ring, the wave function at a position r on the downstream

side of the ring is a superposition of partial waves travelling along path (1)
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side of the ring is a superposition of partial waves travelling along path (1)

and (2):
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(1)

(2)

elastic scattering

contact

Fig. 9.15. Aharonov-Bohm-effect: The ring enables two possible paths (1) and (2) for elec-

tron transport between the left and right contact. Interference occurs if the transport is

either ballistic or phase conserving because of merely elastic scattering (scattering centers

indicated as dots)



Here 𝛹1 and 𝛹2 are the wave functions for vanishing magnetic field.

The total phase shift is the integral of d𝜑 along the path: 

With respect to the magnetic field B, and thus with respect to the vector 
po- tential A the two paths are circulated in opposite direction and one 
obtains for the total phase shift:

where ΦB is the magnetic flux through the ring.  Then, 

Hence the current I as function of the magnetic flux ΦB is 

,  and                      .



A-B Ring Applications

A-B Ring in Semiconductor



Aharonov-Bohm-oscillations as measured on a nanoscale gold ring: 

Oscillations at twice the fundamental (~260 T-1) originate in the interference 

of electrons at the entrance of the ring after travelling a full circle. 

Constructive interference at the entrance leads to a larger backscattering into 

the entrance channel and therefore to a reduction in the current. Such 

Altshuler-Aronov-Spivak-oscillations occur when the phase coherence length 

lΦ is large enough. They are more robust than Aharonov-Bohm-oscillations 

since both partial waves travel the same path and thus encounter the same 

defect pattern. 

Altshuler-Aronov-Spivak (AAS) Oscillation



Problems

Calculate the electric field dependence of the conductivity σ(E) using the 
second iteration for the solution of the Boltzmann equation. In the 
second iteration step, as in the first, use a field-independent distribution 
f0. Discuss interesting applications of a material with a highly field-
dependent conductivity. 

1.

a) Calculate the density of states D(1)(E) for the electronic subband of a 
one-dimensional conductor. Sketch the density of states as function of 
the electron energy E for a sequence of subbands as they exist in a 
conducting wire. 

b) Which scattering processes are possible in electron transport if only a 
single subband is occupied? What is different if a second subband is 
occupied so that the Fermi-level intersects two subbands? 

2.

Altshuler-Aronov-Spivak (AAS) oscillations occur because of the 
constructive interference at the entrance leads. Show that the oscillation 
period is now Φ0/2, half the period than for the Aharonov-Bohm (AB) 
effect.

3.
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